Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(tl(X)) → A__TL(mark(X))
MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
A__NATSA__ADX(a__zeros)
MARK(incr(X)) → A__INCR(mark(X))
MARK(zeros) → A__ZEROS
A__TL(cons(X, Y)) → MARK(Y)
MARK(hd(X)) → MARK(X)
MARK(nats) → A__NATS
A__NATSA__ZEROS
A__ADX(cons(X, Y)) → A__INCR(cons(X, adx(Y)))
MARK(incr(X)) → MARK(X)
MARK(adx(X)) → MARK(X)

The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

MARK(tl(X)) → A__TL(mark(X))
MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
A__NATSA__ADX(a__zeros)
MARK(incr(X)) → A__INCR(mark(X))
MARK(zeros) → A__ZEROS
A__TL(cons(X, Y)) → MARK(Y)
MARK(hd(X)) → MARK(X)
MARK(nats) → A__NATS
A__NATSA__ZEROS
A__ADX(cons(X, Y)) → A__INCR(cons(X, adx(Y)))
MARK(incr(X)) → MARK(X)
MARK(adx(X)) → MARK(X)

The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → A__TL(mark(X))
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
MARK(incr(X)) → A__INCR(mark(X))
A__NATSA__ADX(a__zeros)
MARK(zeros) → A__ZEROS
MARK(hd(X)) → MARK(X)
A__TL(cons(X, Y)) → MARK(Y)
MARK(nats) → A__NATS
A__NATSA__ZEROS
MARK(incr(X)) → MARK(X)
A__ADX(cons(X, Y)) → A__INCR(cons(X, adx(Y)))
MARK(adx(X)) → MARK(X)

The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 7 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(tl(X)) → A__TL(mark(X))
MARK(hd(X)) → A__HD(mark(X))
MARK(tl(X)) → MARK(X)
A__HD(cons(X, Y)) → MARK(X)
MARK(incr(X)) → MARK(X)
A__TL(cons(X, Y)) → MARK(Y)
MARK(hd(X)) → MARK(X)
MARK(adx(X)) → MARK(X)

The TRS R consists of the following rules:

a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__incr(cons(X, Y)) → cons(s(X), incr(Y))
a__adx(cons(X, Y)) → a__incr(cons(X, adx(Y)))
a__hd(cons(X, Y)) → mark(X)
a__tl(cons(X, Y)) → mark(Y)
mark(nats) → a__nats
mark(adx(X)) → a__adx(mark(X))
mark(zeros) → a__zeros
mark(incr(X)) → a__incr(mark(X))
mark(hd(X)) → a__hd(mark(X))
mark(tl(X)) → a__tl(mark(X))
mark(cons(X1, X2)) → cons(X1, X2)
mark(0) → 0
mark(s(X)) → s(X)
a__natsnats
a__adx(X) → adx(X)
a__zeroszeros
a__incr(X) → incr(X)
a__hd(X) → hd(X)
a__tl(X) → tl(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.